
1

The ICSI RT-09 Speaker Diarization System
Gerald Friedland* Member IEEE, Adam Janin, David Imseng Student Member IEEE,

Xavier Anguera Member IEEE, Luke Gottlieb, Marijn Huijbregts, Mary Tai Knox, Oriol Vinyals

Abstract—The speaker diarization system developed at the
International Computer Science Institute (ICSI) has played
a prominent role in the speaker diarization community, and
many researchers in the Rich Transcription community have
adopted methods and techniques developed for the ICSI speaker
diarization engine. Although there have been many related
publications over the years, previous articles only presented
changes and improvements rather than a description of the full
system. Attempting to replicate the ICSI speaker diarization
system as a complete entity would require an extensive literature
review, and might ultimately fail due to component description
version mismatches. This article therefore presents the first full
conceptual description of the ICSI speaker diarization system
as presented to the National Institute of Standards Technology
Rich Transcription 2009 (NIST RT-09) evaluation, which consists
of online and offline subsystems, multi-stream and single-stream
implementations, and audio and audio-visual approaches. Some
of the components, such as the online system, have not been
previously described. The article also includes all necessary
preprocessing steps, such as Wiener filtering, speech activity
detection and beamforming.

Index Terms—Speaker Diarization, Machine Learning, Gaus-
sian Mixture Models (GMM)

I. INTRODUCTION

THE goal of Speaker Diarization is to segment audio
without supervision into speaker-homogeneous regions

with the goal of answering the question “who spoke when?”.
Knowing when each speaker is talking in a recording is a
useful processing step for many tasks; it has been used for
copyright detection, video navigation and retrieval, and several
branches of automatic behavior analysis. In the field of rich
transcription, speaker diarization is used both as a stand-alone
application that attributes speaker regions in an audio or video
file and as a preprocessing task for speech recognition. As a
preprocessing step, it enables speaker-attributed speech-to-text
and allows for different modes of adaptation (e.g. vocal tract
length normalization and speaker model adaptation [1]). The
task has therefore become central in the speech community
and, as a result, also in the National Institute of Standards
Technology (NIST) Rich Transcription (RT) evaluation, where
it has been evaluated for several years. Observing the NIST RT
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evaluations of past years (i.e. 2006, 2007 and 2009) [2]–[4],
one can see that the state-of-the-art systems use a combination
of agglomerative hierarchical clustering (AHC) with Bayesian
Information Criterion (BIC) [5] and Gaussian Mixture Models
(GMMs) of frame-based Mel Frequency Cepstral Coefficient
(MFCC) features [6]. This article presents a comprehensive
description of a set of such systems, the ICSI speaker diariza-
tion systems submitted to the NIST RT-09 evaluation, with the
goal of allowing their reproduction by third parties without
requiring an exhaustive literature research and considerable
experimentation. We also present the current limits and discuss
future improvements.

The article’s structure mirrors the conceptual structure of
the ICSI speaker diarization systems: After a brief overview
of the system is given in Section II, Section III describes
the preprocessing steps such as format normalization, noise
reduction, channel selection, and so on. Beamforming, the
process by which signals from multiple microphones are
exploited, is outlined in Section IV. Speech activity detec-
tion is explained in Section V. Next, the batch system for
segmentation and clustering of the audio data is described in
Section VI. This core system is used for single-microphone
diarization. Additional details on audio-visual diarization are
presented in Section VII-A. The multi-stream combination
algorithm which is used for multi-microphone and audio-
visual diarization is described in Section VII-B. Section VII-C
describes a first version of a low-latency diarization system,
which was presented as an experimental condition in the
NIST RT-09 evaluation. Finally, Section VIII presents and
discusses some results of the systems on the RT-09 evaluation,
followed by the conclusion and presentation of future work in
Section IX.

II. SYSTEM OVERVIEW

This section provides a broad outline of the speaker di-
arization approach; the following sections go into further
detail. The ICSI RT-09 diarization system is derived from the
Rich Transcription evaluation 2007 [4]. Figure 1 provides on
overview of the Multiple Distant Microphone (MDM) and the
Single Distant Microphone (SDM) basic systems.

The first step of the processing chain is a dynamic range
compression, followed by Wiener filtering for noise reduc-
tion. The HTK library [7] is used to convert the audio
stream into 19-dimensional Mel-Frequency Cepstral Coeffi-
cients (MFCCs) which are used as features for diarization. A
frame period of 10 ms with an analysis window of 30 ms is
used in the feature extraction. Prosodic features are extracted
using Praat. We use the same speech/non-speech segmenta-
tion as in [4]. For the segmentation and clustering stage of
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Fig. 1. Overview of the processing chain for the single distant microphone (SDM) case (left) and the multiple distant microphone (MDM) case (right)

speaker diarization, an initial segmentation is generated by
our prosodic feature initialization scheme, which is described
in Section VI-A.

The procedure for segmenting the audio data takes the
following steps:

1) Train a set of GMMs for each initial cluster.
2) Re-segmentation: Run a Viterbi decoder using the cur-

rent set of GMMs to segment the audio track.
3) Re-training: Retrain the models using the current seg-

mentation as input.
4) Select the closest pair of clusters and merge them.

At each iteration, the algorithm checks all possible
pairs of clusters to see if there is an improvement in
BIC scores when the clusters are merged and the two
models replaced by a new GMM trained on the merged
cluster pair. The clusters from the pair with the largest
improvement in BIC scores, if any, are merged and the
new GMM is used. The algorithm then repeats from the
re-segmentation step until there are no remaining pairs
that when merged will lead to an improved BIC score.

The results of the algorithm consist of a segmentation of
the audio track with n clusters and an audio GMM for each
cluster, where n is assumed to be the number of speakers.

To use multiple audio tracks as input (presumably from a
far-field microphone array), beamforming is first performed as
a preprocessing step to produce a single noise-reduced audio
stream from the multiple audio channels by using a delay-and-
sum algorithm. In addition, as part of its processing, beam-
forming also estimates time-delay-of-arrival (TDOA) between
each microphone and a reference microphone in the array.
The TDOA features contain information about the location
of the audio source, and are used as an additional feature in
the clustering system. Separate GMM models are estimated
from these TDOA features. In the Viterbi decoding and in the
BIC comparison, a weighted combination of the MFCC and
TDOA likelihoods is used. We are using the same mechanism
for audio/visual integration (see Section VII-A). The online
system, described in Section VII-C is an experimental system
not based on the diarization core system.

III. PREPROCESSING

For all the systems described in this article, the audio files
are first preprocessed both to achieve uniformity of format and
to mitigate the effects of noise and channel characteristics.
First, each channel of multichannel audio is extracted and
given a unique name. All files are then converted to 16 bit
linear PCM by truncating the high order bits in files with 16
or more bits per sample. Next, files sampled at greater than 16
kHz are downsampled to 16 kHz. In our experience, diarization
is not sensitive to choice of downsampling algorithm, so we
use the same method as with our work in speech recognition:
“Medium Sinc Interpolation” from the open source libsam-
plerate [8] package. We did not perform contrast experiments
with other downsamplers.

To mitigate the effects of noise, we apply a Wiener filter [9]
to each channel. The Wiener filtering software was originally
developed for the Aurora project [10], which dealt with speech
recognition of numbers (e.g. zip codes and phone numbers)
in noisy conditions. However, we have found the technique
to be widely applicable, and we have never observed it to
hurt performance. It has therefore become standard practice at
ICSI to apply it to all distant microphone audio tasks. We did
not perform the contrast experiment of leaving out this step.
The noise reduction algorithm includes a noise estimation step
that uses the results of a voice activity detector. Although
we experimented with various speech/non-speech detectors
including the one described in Section V, the built in detector
worked as well or better than the other methods. More details
on the Wiener filtering can be found in [11].

The next steps differ depending on the number of mi-
crophones in the task. For the Single Distant Microphone
(SDM) task, where only one signal was present, we compute
prosodic features (see Section VI-A) on the noise-reduced
channel. This is followed by dynamic range compression
to mitigate the change in energy from nearby vs. distant
participants, and consists of merely raising the signal to a small
power (specifically, s0.75). Finally, Mel Frequency Cepstral
Coefficients (MFCCs) are computed using the HCopy program
from HTK [7] using 19 MFCC features, a 10 ms step size and
a 30 ms analysis window.

The Multiple Distant Microphone (MDM) condition in-
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Condition Arrays Channels
MM3a 1–4 1 5 9 13 17 22 26 30 34 38 43 47 51 55 59 64

ADM 1–3 1 5 9 13 17 26 30 34 38 47 51 55 59 64
4 1 5 9 13 17 22 26 30 34 38 47 51 55 59 64

TABLE I
CHANNELS FROM LARGE ARRAY USED FOR MM3A AND ADM

CONDITIONS

cludes desktop microphones and small microphone arrays,
resulting in at most a few dozen channels per meeting.
Each channel is separately noise-reduced using the method
described above. Next, the channels are combined into a single
channel using a delay-sum technique described in detail in
Section IV. Delay features are computed in this step as well.
Note that dynamic range compression is not performed in this
condition. Finally, MFCCs and prosodic features are computed
on the combined signal as described in the previous paragraph.

The next condition, known as MM3a, consists of three
meetings that used four large microphone arrays, each with 64
channels (a total of 256 channels). Because of a (since fixed)
bug in the beam forming software at the time of the evaluation,
we were only able to process a total of 64 channels to produce
the single channel output. The first line of Table I indicates
which channels were used.

Our previous experience on combining the delay features
with MFCCs always used 8 microphones per meeting. There-
fore, to avoid retuning, we restrict ourselves to exactly eight
delay features per meeting — channel 1 and 64 from each
array. The rest of the processing for the MM3a condition is
identical to the MDM (Multiple Distant Microphone) condi-
tion described above.

The All Distant Microphone (ADM) condition uses all
available microphones, including the large array from the
MM3a condition for those meetings that were equipped with
them. Since we wanted to use the desktop microphones, we
dropped 7 microphones from the MM3a condition and added
the 7 desktop microphones for the 3 meetings that included
the large array. The microphones used are shown in the last
two lines of Table I.

IV. MULTICHANNEL ACOUSTIC BEAMFORMING

Since meetings often use multiple microphones to record
from several different locations within the room [2], [12],
[13], application of Rich Transcription to the meeting domain
required a method for handling multiple microphones (referred
to as channels). We therefore developed robust acoustic beam-
forming algorithms to cope with such multiple channels by
transforming them into a single enhanced channel to which
we could apply speech recognition or speaker diarization
algorithms. Although many alternative algorithms exist for
beamforming, we focused on relatively simple algorithms that
could overcome the many constraints that meetings impose,
including: 1) exact microphone locations are unknown; 2) their
impulse responses and quality are unknown and often differ;
3) the number of microphones per meeting vary (from 2 to
more than 100); and 4) the locations and number of sound
sources (i.e. the speakers) is unknown.

Our current acoustic beamforming approach for multichan-
nel speaker diarization described below is presented in depth
in [14]. This approach has been also used by many RT
participants through the open-source acoustic beamforming
toolkit known as BeamformIt [15].

BeamformIt is based on the weighted-delay&sum micro-
phone array algorithm, which is a generalization of the well-
known delay&sum beamforming technique [16] for far-field
sound sources. The single output signal y[n] is expressed as the
weighted sum of the different available channels as follows:

y[n] =

M∑
m=1

Wm[n]xm[n− TDOA(m,ref)[n]] (1)

where Wm[n] is the relative weight for microphone m (out of
M microphones) at frame n, with the sum of all weights being
equal to 1; xm[n] is the signal for each channel at frame n,
and TDOA(m,ref)[n] (Time Delay of Arrival) is the number
of samples that each channel should be delayed (around
sample n) in order to optimally align it with the channel
taken as reference. In this implementation, TDOA(m,ref)[n]
is estimated in steps that are 250 ms long using GCC-PHAT
(Generalized Cross Correlation with Phase Transform) [17]
by using an analysis window of 500 ms. This algorithm is
computationally efficient (several times faster than real-time)
and can cope with the constraints mentioned above.

In addition to the GCC-PHAT core module, a set of other
steps are added to compute the single output channel from the
multiple initial channels. This is shown in Figure 2, and is
split into four main blocks described below.

A. Iterative Single Signal Block
Prior to multichannel beamforming, each channel is inde-

pendently Wiener filtered (see Section III) to remove noise
(assumed to be additive and of a stochastic nature). Next, a
weighting factor is computed per channel in order to maximize
the dynamic range of the signal and therefore reduce the output
quantization errors produced by the use of the standard 16 bits
per sample. The individual channel weighting is computed by
averaging the maximum energy values over a sliding window
of several seconds (set by default to 10 seconds).

B. Reference Channel Selection and TDOA Calculation
Several algorithms are used to extract information from the

input signals. First, a coarse cross-correlation-based algorithm
is used to find the system’s reference channel by estimating
which channel best matches the others over the entire meeting.
Although NIST usually provides a reference channel, we
found that computing our own generally led to improved
results, particularly when estimating the time difference of
arrival (TDOA) values. Next, only for meetings recorded at
ICSI, a special processing step is applied to reduce the inter-
channel skew present in these recordings as documented in
[18]. This module reduces the skew by coarsely aligning the
different channels by using long analysis windows. Finally,
the aforementioned GCC-PHAT TDOA estimation algorithm
is used to retrieve the top N best alignment delays per step
from which we choose the final delay in the next block.
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Fig. 2. A block diagram of the BeamformIt toolkit used in the multi-microphone condition as described in Section IV.

C. TDOA Values Selection Block

In this block, a post-processing step is applied to the
obtained N -best TDOA values and the most appropriate delay
is selected per time step. First, a noise threshold is applied
to the signal in order to detect those regions where TDOA
estimation is prone to unreliable results (e.g. during silence).
When the GCC-PHAT cross-correlation result for the 1-best
result is below this threshold the previously computed delays
are extended to cover the current less reliable ones. Then a
dual-step Viterbi decoding is executed in order to select the
optimum TDOA values from the N -best available at each
step. We call this dual-step as it first computes a discrete
Viterbi decoding to select the 2-best delays among all N -
best available in every single channel, and then computes the
best overall combination by considering all 2-best delays from
all channels. To do this within a Viterbi decoding, the GCC-
PHAT correlations are used as delay probabilities, and the
TDOA distances between consecutive estimations are used as
transition probabilities. For more details, see [14] and [19].

D. Output Signal Generation Block

Once all information is computed from the input signals,
and the optimum TDOA values have been selected, the Beam-
formIt outputs the enhanced signal and any accompanying
information to be used by the subsequent systems. First,
for each analysis window a relative channel weight Wm is
computed in an adaptive manner by using cross-correlation
between all channels in order to account for inter-channel
differences in impulse response and overall quality. When any
of the channels is below a tuned threshold, it is eliminated from
the final sum. Finally, the signal sum obtains a single enhanced
channel and stores it as a wav/sph file. Optionally, the system
can also output the final computed time delays between each
channel. These values are known as delay features, and are
used in combination with MFCCs (Section III) in the later
stages of the system.

V. SPEECH ACTIVITY DETECTION

Our method for Speech Activity Detection (SAD) is inspired
by a model-based approach where speech and non-speech are
modeled by two Hidden Markov Models (HMMs) and the
speech/non-speech segmentation is obtained by performing

a Viterbi search on the audio. The difference between the
standard model-based approach and our method is that for
our system the models are not trained on a training set, but
during the classification process itself on the audio that is being
processed.

In order to train the models on the audio itself, we
first require a rough initial classification, called bootstrap
classification. We use a standard model-based speech/silence
classifier to obtain this initial classification. Once the bootstrap
classification is available, three models are trained on the audio
to be processed: a model trained on silence; a model trained
on audible non-speech; and a model trained on speech. Each
of these models is trained on the data to be segmented. By
applying the three models, the system is able to perform high
quality SAD.

Our SAD algorithm does not use any parameters that require
tuning on in-domain training data. It is possible to perform
SAD directly on any type of recording without the need to
re-train the statistical models or fine tune parameters on in-
domain training data. We used this SAD system for RT-07
and RT-09 without tuning any parameters — not even the
bootstrapping models that were originally trained on Dutch
broadcast news (rather than matched English meeting data).

This section provides an overview of the SAD system.
An in-depth description of the system can be found in [20].
An implementation of the algorithm as well as the bootstrap
speech/silence models are freely available under a GNU li-
cense in the SHoUT toolkit [21].

Step 1: Bootstrapping Speech and Silence
The recording is first segmented using a model-based boot-

strapping component which segments the data into speech
and silence fragments. The component consists of an HMM
with two strings of parallel states. The first string represents
silence and the second string represents speech. The states
in each string share one Gaussian mixture model (GMM)
with diagonal covariance matrix as their probability density
function. Using a string of states instead of single states
ensures a minimum duration of each segment. The minimum
duration for silence is set to 30 states (300 ms) and the
minimum duration for speech is set to 75 states (750 ms).

For feature extraction, twelve MFCCs supplemented by the
zero-crossing rate are used. From these thirteen features, the
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derivatives and second derivatives are calculated and added to
the feature vector, creating a 39-dimensional feature vector.
Each vector is calculated on a window of 32 ms audio, with a
10 ms step-size between one vector and the next.

Step 2: Training the Models for Non-Speech

Next, a silence and a (non-speech) sound model are created
from the parts of the data classified as silence in the bootstrap-
ping phase. Measures are developed to calculate the confidence
that a segment is actually silence or audible non-speech. To
determine these confidences, first all segments that are longer
than one second are divided into evenly sized shorter segments
of one second each, so that all segments are comparable in
length. The confidence measures then returns a certain number
of these one-second-segments that are most likely to be either
silence or audible non-speech.

It is determined if a one-second-segment is silence by
measuring the energy for each frame and calculating the mean
energy of the segment. This calculation is performed for all
candidate segments (all segments classified as non-speech
by the bootstrap classification component) and the resulting
values are histogrammed. By using the histogram, it is possible
to return the segments with the lowest mean energy.

For determining the number of one-second-segments that
are most likely audible non-speech, a similar approach is taken
as for silence segments: segments are picked with the highest
average energy. From these segments, the segments with the
highest mean zero-crossing rates are returned. In other words,
this algorithm returns the segments with the highest mean
energy and zero-crossing rates. Although audible non-speech
segments will have high mean energy values, it is possible that
speech segments even have higher average energy values. It
is assumed that for these speech segments, the average zero-
crossing rates will be lower than for the audible non-speech.

In the first training iteration, a small part of the non-speech
data that is marked with the highest silence confidence score
is used to train an initial silence model. A small amount of
data that is labeled with high audible non-speech confidence
scores is used to train the initial “sound” model.

Using these silence and sound models and the primary
speech model, a new classification is created. This classifi-
cation is used to train silence and sound models that fit the
audio very well simply because they are trained on it. All
data assigned to the sound and silence models by the new
classification are merged and any samples that were originally
assigned to the speech model in the first iteration are subtracted
from the set. This is done to avoid having the sound model pull
the data from the speech model. This risk is present because
although the sound model is already trained on the data that
is being processed, the speech model applied is still the old
model trained on outside data. Therefore, the sound model
may fit all of the data better (including speech segments) so
that during the Viterbi alignment, speech segments may be
assigned to the sound model.

The remaining data is divided over the silence model and the
sound model as before. The silence model receives data with
high silence confidence scores and the sound model receives

data with high audible non-speech confidence scores. This
time though, the confidence threshold is not set as high as
the first time, and consequently more data is available to train
each model and therefore one more Gaussian can be used
to train each GMM. This procedure is repeated three times.
Note that the confidence threshold is a system parameter that
could potentially be tuned according to the audible non-speech
prior. In our experiments we have observed that tuning this
parameter in not needed for the algorithm to perform well on
various types of audio [4]. Although the silence and sound
models are initialized with silence and sound respectively,
there is no guarantee that sound is never classified as silence.
Energy is not used as a feature (see Section III) and some
sound effects appear to be modeled by the silence GMM very
well. Because the goal is to find all speech segments and
discard everything else, this is not considered a problem.

Step 3: Training All Three Models

After the silence and sound models are trained, a new speech
model is trained using all data classified as speech. By now,
the non-speech will be modeled well by the sound and silence
models so that a Viterbi alignment will not assign any non-
speech to the speech model. This makes it possible to train
the speech model on all data assigned to it rather than only
on the high confidence regions. Once the new speech model
is created, all models are iteratively retrained with increasing
the number of Gaussians by one in each step until a threshold
is reached. At each training iteration the data is re-segmented.
Note that in this phase, all data is being used to train the
models. During the earlier iterations, the data assigned to the
speech class by the bootstrap classification component was not
used to train the silence and sound models, but because now
the speech model is being retrained, it is less likely that using
this data will cause the sound model to pull speech data away
from the speech model.

Step 4: Training Speech and Silence Models

The algorithm works for audio of various domains and with
a range of non-speech sounds, but it is not well suited for data
that contains speech and silence only. In that case, the sound
model will be trained solely on the speech that is misclassified
at the first iteration (because the initial models may be trained
on data not matching the audio being processed, the amount of
misclassified speech can be large). During the second training
step the sound model will subtract more and more speech
data from the speech model and finally instead of having
a silence, sound and speech model, the system will contain
two competing speech models. Therefore as a final check,
the Bayesian Information Criterion (BIC, see Equation 4 in
Section VI-B) is used to check if the sound and speech model
are the same. If the ∆BIC score is positive, both models are
trained on speech data and the speech and sound models need
to be replaced by a single speech model. Again, a number of
alignment iterations is conducted to obtain the best silence and
speech models.
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Category Short description
pitch median of the pitch
pitch minimum of the pitch
pitch mean of the pitch tier
formants standard deviation of the 4th formant
formants minimum of the 4th formant
formants mean of the 4th formant
formants standard deviation of the 5th formant
formants minimum of the 5th formant
formants mean of the 5th formant
harmonics mean of the harmonics-to-noise ratio
formant mean of the formant dispersion
pitch mean of the pointprocess of the periodicity contour

TABLE II
THESE 12 LONG-TERM ACOUSTIC FEATURES HAVE GOOD SPEAKER

DISCRIMINATION ACCORDING TO THE RANKING METHOD PROPOSED IN
[24]. THE FEATURES ARE EXTRACTED WITH THE HELP OF PRAATLIB, A

LIBRARY USING PRAAT [25], ON ALL THE SPEECH REGIONS OF THE
RECORDINGS. FEATURES ARE THEN USED TO ESTIMATE THE NUMBER OF

INITIAL CLUSTERS TO PERFORM THE AGGLOMERATIVE CLUSTERING. FOR
MORE INFORMATION ON THE FEATURES REFER TO THE PRAAT

DOCUMENTATION.

VI. SEGMENTATION AND CLUSTERING

A. Initialization

The segmentation and clustering starts with an adaptive
initialization scheme that can be applied to most state-of-the-
art Speaker Diarization algorithms. More specifically, the ini-
tialization is a combination of the recently proposed “adaptive
seconds per Gaussian” (ASPG) method [22] and a new pre-
clustering and number of initial clusters estimation method
based on long-term features [23]. This initialization method
results in an AHC (agglomerative hierarchical clustering)
approach where the two most sensitive parameters, namely
the number of initial clusters k and the number of Gaussians
per Gaussian Mixture g, are estimated without the need for
supervision.

1) Pre-clustering: The pre-clustering method estimates the
number of initial clusters and also provides a non-uniform
initialization for the AHC procedure based on the long-term
feature study and ranking presented in [24], where 70 different
suprasegmental features have been studied according to their
speaker discriminability. Derived from the ranking in [24], the
12 top-ranked features (listed in Table II) are extracted on all
the speech regions in the recording.

Temporally slow features are computed as statistics based
on (noisy) pitch and formant values across time. In our
configuration, we use the Praat library [25] to compute 100
pitch values and 80 formant values per second. For the feature
extraction procedure, we use a Hamming window function
with a minimum window size of 1000 ms. The minimum win-
dow size parameter is used as follows: Every segment output
from the speech/non-speech detector of less than 2000 ms (2
times the minimum) is untouched and segments larger than
2000 ms are split into segments of at least 1000 ms, thus
yielding an effective window length w ∈ [1000, 2000], i.e. a
minimum window size of 1000 ms. The concept of a minimum
window size is a trade-off between using longer windows,
allowing accurate estimates of statistical features, and using
smaller windows, providing a larger number of feature vectors

Prosodic 

features
Model data with a GMM  

containing n Gaussians

10-fold 

cross-validation

Log-likelihood 

growing?

n:=1

n++
Yes

cross-validationgrowing?

Train GMM containing 

k Gaussians with EM 

Segment

(group feature vectors belonging 

to the same Gaussian together)

No

k=n
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for good clustering (an appropriate estimation of k) and a
reasonable non-uniform initialization. The minimum window
size is not a very sensitive initialization parameter because
even if the initial segmentation and k vary, we can still
interpolate g accordingly [26].

The 12-dimensional feature vectors are then clustered with
the help of a GMM with diagonal covariances. As this
clustering serves only as initialization for an agglomerative
clustering algorithm, it is desirable for the model selection to
over-estimate the number of initial clusters; the agglomerative
clustering algorithm merges redundant clusters but it is not
able to split them. To determine the number of Gaussians per
Gaussian Mixture, we train GMMs with different number of
Gaussians (using the EM algorithm [27]), evaluate the log-
likelihood of the obtained GMMs and choose the number
of Gaussians based on the maximal log-likelihood result. To
avoid overfitting, we apply 10-fold cross-validation (see [28,
page 150]), i.e. we divide the set of feature vectors into
ten subsets, train a GMM on each subset and evaluate the
log-likelihood on the corresponding other nine subsets. Then,
expectation maximization is used to train the GMM (consisting
of the previously determined number of Gaussians) on all
the feature vectors. Finally, every feature vector is assigned
to one of the Gaussians in the GMM. We can group all
the feature vectors belonging to the same Gaussian into the
same initial segment. The clustering thus results in a non-
uniform initialization where the number of initial clusters
is automatically determined. A schematic view of the pre-
clustering can be seen in Figure 3.

2) Adaptive seconds per Gaussian (ASPG): An appropriate
estimate for the number of seconds of data available per Gaus-
sian for training, secpergauss, is crucial for good Speaker
Diarization performance. We found a general estimated opti-
mal secpergauss based on a linear regression on the duration
of speech in a meeting [22]. secpergauss relates the two
initialization parameters k and g. Anecdotal evidence suggests
that optimal k is best chosen in relation to the number of
different speakers in the meeting, whereas optimal g is more
related to the total amount of available speech; therefore,
we use the pre-clustering to estimate k. Having an estimate
for k, linear regression can then be used to determine g as
summarized in Equation 2 and Equation 3.

secpergauss = 0.01 · speech in seconds + 2.6 (2)
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g =
speech in seconds
secpergauss · k

(3)

B. Core Algorithm

Our core segmentation/clustering system uses an agglom-
erative hierarchical clustering approach based on a Hidden
Markov Model (HMM), which models the temporal structure
of the acoustic observations, and Gaussian Mixture Models
(GMMs) as emission probabilities to model the multimodal
characteristics of the data.

The main tasks involved in the core system are as follows:
• Step 0. Initialization, as discussed above.
• Step 1. Model retraining and re-segmentation using Ex-

pectation Maximization (EM).
• Step 2. Model merging based on the Bayesian Informa-

tion Criterion (BIC).
• Step 3. Stopping condition (if there are more models to

merge, go to step 1; otherwise, go to 4).
• Step 4. Final segmentation and output.

Step 1: Model Retraining and Resegmentation: After pre-
processing acoustic observations that contain speech (as pre-
viously described in Section V), the main challenge is to
segment the data and generate speaker models where no
a priori information is known. This process is done iteratively,
in an EM fashion, where models are trained based on current
temporal segmentation, and a new segmentation is recomputed
using the newly trained models. These two steps are iterated
through three times before moving to Step 2.

For model retraining, we assume we are given a segmenta-
tion and the goal is to retrain the acoustic models for each of
the states (each state models different speech characteristics
of each speaker and, after the agglomerative clustering has
converged, they model all speech found in a meeting for a
single speaker). Since the segmentation is given by the Viterbi
path (and not by the forward-backward algorithm), each frame
is uniquely assigned to a single state. The update on the k-
th state emission model, which is a GMM, is performed on
the frames that belong to state k given by the segmentation,
and trained using the standard EM procedure to update the
parameters for each mixture within the GMM as described in
[4]. We consider diagonal covariance matrices, so each mixture
has a total of 38 parameters to be updated (19 for the mean
and 19 for the covariance).

During resegmentation, we assume that models are given (in
the form of a GMM), and the task is to find the segmentation
for the dual purpose of retraining the models, and to give an
output that will yield the desired information that diarization
provides (i.e. identifying who spoke when).

Since the best front-end features that were found for this
task are spectral features in the form of MFCC with 19
coefficients (Section III), we need to ensure that the clusters
that we find are modeling speakers instead of smaller acoustic
units such as phones (since similar features are used for speech
recognition). To achieve this, we force the topology of our
HMM to remain in the same state for at least 2.5 seconds
(i.e. we set a minimum duration of speech of 250 samples).
This step is critical for the core algorithm to work. The

choice of 2.5 seconds seems reasonable, as it assumes that
each speaker takes the floor for at least that amount of time.
Smaller numbers yield worse performance on a development
set, and state persistence shorter than 1.0 seconds yielded very
poor performance. Lastly, the HMM model assumes that from
a given boundary state, we can jump to any other speaker
(including itself) with equal probability.

Given the HMM structure described above, and the emission
probability models obtained from the GMM, the segmentation
is performed using the Viterbi algorithm for efficiency.1

Step 2: Model Merging Based on BIC: Given that our ap-
proach agglomerates clusters, a metric for which two clusters
should be merged at any given point is needed. The hypothesis
from which we start is that the large number of clusters at the
beginning will align with some acoustic characteristic for a
single speaker (i.e. each cluster maps to one speaker only, but
the mapping is many to one), and the goal is to find which
set of clusters correspond to the same speaker, to merge them,
and to reduce the total number of clusters by one. Given this,
one should answer the question: which two clusters (if any)
correspond to the same speaker and thus should be merged?

This reduces to a model selection problem for any pair of
clusters, and can be reformulated as the question: given these
two clusters, are the two separate models better than a joint
model? To answer the question, we use the Bayesian Infor-
mation Criterion (BIC), which is a model selection technique,
and the two hypotheses as follows:

For each cluster pair (i, j), test the two hypotheses:
-H0: cluster i and j should be merged
-H1: cluster i and j should not be merged
The merging score S is given by the change in the BIC score

(called delta BIC) [5], where the number of parameters of the
hypothesized merged cluster is the sum of the parameters that
the initial clusters i and j had, which reduces the delta BIC
to a simple likelihood computation (as the total number of
parameters of our model remains constant across iterations):

S(i, j) = L(xi∪j |Θi∪j)− L(xi|Θi)− L(xj |Θj) (4)

where xi and xj are the data from clusters i and j, xi∪j is the
data that belongs to either i or j, and Θi, Θj , and Θi∪j are
the GMM parameters of clusters i, j, and i ∪ j. The number
of parameters in Θi∪j is the sum of the number of parameters
in Θi and Θj .

Note that if S(i, j) > 0, H0 is selected, and otherwise H1

is selected, as S(i, j) = log p(H0)
p(H1)

.
Finally, we merge only one pair of clusters at a time (before

returning to Step 1), selecting the pair of clusters (i, j) such
that S(i, j) is the maximum. The newly created GMM has as
many mixtures as the sum of the two merged GMMs, and we
initialize each mixture to have the same mean and variance as
the original, merged, model, with mixture weights re-scaled
so that the sum is one.

Step 3 and 4: Stopping Criterion and Final Output: If
S(i, j) is negative for all possible cluster pairs, no more merg-
ing is required and a final segmentation is performed using

1Full forward-backward for retraining models using Baum-Welch did not
improve the performance versus “hard” assignments given by the Viterbi path.
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the current cluster models. During the final segmentation, the
clusters should be more accurate and should, in theory, match
a single speaker. The HMM used to produce the final output
is set with a minimum duration of 1.5 seconds instead of 2.5
seconds to suffer fewer quantization errors on the evaluation
metric used for diarization.

VII. NEW DIRECTIONS

The RT-09 evaluation incorporated several optional tasks for
the first time that are described in the following.

A. Audiovisual Diarization

The audiovisual diarization system incorporates the single
distant microphone and the close-up camera views to perform
speaker diarization. The ICSI RT-07 multi-stream engine was
used to combine MFCC, prosodic, and video features. In this
subsection, we describe the audio and video features used.

Three types of features are used in the audiovisual diariza-
tion system: MFCC, prosodic, and video. We describe these
features below.

We extract 19th order MFCC features computed over a 30
ms window with a step size of 10 ms. These are standard fea-
tures that were also used in our audio-only speaker diarization
systems (see Section III).

Prosodic features are also computed over the single distant
microphone recording. We extract 10 prosodic features which
perform well on our development set. The prosodic features
are median pitch, mean pitch, minimum pitch, mean pitch tier,
mean pitch tier number of samples, mean formant dispersion,
mean long term average spectrum energy, minimum 5th for-
mant, mean 5th formant, and mean pointprocess periodicity
contour.

We include compressed domain based video features that
were shown to work well for audiovisual speaker diarization
in [29]. These features are obtained from the MPEG-4 video
encoding, making them extremely fast to extract.

The video features are average motion vector magnitudes
over estimated skin blocks for each of the close-up cameras.
Motion vector magnitudes are used to estimate activity levels
of the participants [30]. By averaging the motion vector
magnitudes over skin blocks, we focus our attention to salient
regions of the video and reduce the effect of scale variation
[29].

The motion vectors are block-based and computed during
video compression. Further post-processing is performed for
the motion vectors; namely, motion vectors for blocks with
low confidence λ values (blocks with a small amount of
texture) are considered not reliable and thus set to 0. For more
information regarding the motion vector confidence, see [30].

The skin blocks were determined based on the chrominance
Discrete Cosine Transform (DCT) DC coefficients. We use a
GMM to model the chrominance DCT DC coefficients of skin
regions [31], and blocks for which the likelihood exceeded a
threshold were classified as containing skin.

Since the video features are computed for the close-up
camera views, we compute these for the meetings held at the
Idiap Research Institute and Edinburgh only. The meetings
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Fig. 4. The audio-visual speaker diarization system is an extension of the
SDM system.

recorded at NIST did not contain the close-up camera view,
so we use our audio-only speaker diarization submission for
those meetings.

B. Multi-stream Algorithm

The ICSI RT-09 diarization engine is able to combine the
clustering information from the various components—MFCCs,
prosodic features, delay features, and video features—into a
single optimal choice of clustering. The configuration that
combines MFCC, prosodic, and audio/visual features is shown
in Figure 4 and described below.

After the initialization, GMM parameters for each type of
feature (ΘMFCC , Θpros, and Θvid) are trained for each cluster
and the input stream is resegmented using the hard Expectation
Maximization (EM) algorithm. In the E-step, segmentation is
performed such that the “joint log-likelihood” L̂ of the data
is maximized based on the current parameters of the GMM.
In the M-step, the GMM parameters for each type of feature
are updated based on this new segmentation. The “joint log-
likelihood” for cluster k and frame i is defined as:

L̂(x[i]|Θk)
.
= α · L(xMFCC [i]|ΘMFCC,k) (5)
+ β · L(xpros[i]|Θpros,k)

+ (1− α− β) · L(xvid[i]|Θvid,k)

where xMFCC [i], xpros[i], and xvid[i] are the MFCC feature
vector, prosodic feature vector, and video feature vector at
frame i, L is the log-likelihood, Θk is the parameters for the
joint model for cluster k, and α, β ∈ [0, 1] are weights for
the MFCC and prosodic log-likelihoods. Empirically we found
that α = 0.75 and β = 0.1 worked well for our development
set.

The merging steps proceed as described in Section VI-B
but replacing the standard likelihood by the one represented
in Equation 5.
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C. Low-Latency Diarization

The goal of low-latency diarization is to create a system that
minimizes the sample processing latency, defined as an average
of the amount of sensor data (in seconds) an algorithm needs
to process for each sample.

Our online diarization system for both the SDM and MDM
are fundamentally the same, comprised of a training step and
an online recognition step. We used our offline SDM and
MDM (Section VI) for the training step, which generated
models for use in the online recognition step. In this section,
we will describe the training tools and the operation of the
online recognition system.

1) Training: For the training step, we take the first 1000
seconds or the entire meeting file before the testing region
(whichever is larger) and perform a regular offline speaker
diarization using the system we submitted as our primary SDM
and MDM conditions. We then train speaker models and a
speech/non-speech model from the output of the system. This
is done by concatenating 60 random seconds of each speaker’s
segmented data and the non-speech segments. We then train
a GMM for each speaker and for the non-speech model with
20 Gaussians per mixture using expectation maximization on
a diagonal-only covariance matrix.

2) Online Diarization: For the online diarization step, we
use a GMM-SVM system as fully described in [32], the use
of which is briefly described here. After the training data
is extracted, we perform online recognition of the remaining
portion of the meetings using the trained models. For every
frame, the likelihood for each set of features is computed
against each set of Gaussian Mixtures obtained in the training
step, i.e. each speaker model and the non-speech model. A
total of 250 frames is used for a majority vote on the likelihood
values to determine the classification result. Therefore the
latency totals t + 2.5 seconds per decision (plus the portion
of the offline training that overlaps with the testing region).
The online recognition step does not take advantage of delay
features, although the MDM system uses beamformed audio
(beamforming has a latency of 0.5 seconds).

The rationale behind the system is that meetings happen
repeatedly in the same room with the same people. In the
beginning of the first meeting, one would train speaker models
using the offline system and then be able to compute the “who
is speaking now” information after 1000 seconds (plus run-
time) every 2.5 seconds. Unfortunately, the system currently
does not detect any speakers who were not present in the initial
training phase. We experimented with different “unknown
speaker detection” methods, but all of them decreased our total
score significantly on the development set.

VIII. RESULTS

Table III shows the official NIST Rich Transcription 2009
evaluation results for the various conditions [33]. ADM (all-
distant microphones), MM3A, and MDM are different micro-
phone array processing tasks, with MDM being considered
the most important task. We used the Diarization Error Rate,
which is defined by NIST, as evaluation measure. The Di-
arization Error Rate expresses the percentage of time that is

System Condition
Speech Diarization

Non-Speech Error
Error Rate Rate

Batch Audio

adm 6.43 28.52
mm3a 6.29 28.32
mdm 4.92 17.24
sdm 5.92 31.30

Online Audio mdm 7.94 39.27
sdm 15.03 44.61

Audiovisual sdm 6.89 32.56

TABLE III
RESULTS ON THE EVAL09 SET FOR THE BATCHED (OFFLINE) AUDIO

SYSTEM, THE LOW-LATENCY ONLINE SYSTEM, AND THE AUDIOVISUAL
SYSTEM.

not attributed correctly to a speaker or to non-speech. As in
previous years, the results show that adding more microphones
does not necessarily increase the accuracy of the system.
The RT-09 dataset differs from previous datasets in that it
is more challenging because it has more speakers and also
more overlapped speech. Therefore the biggest challenge in
RT-09 was to detect the correct number of speakers and to
create overlap-robust methods. The results shown in Table III
reflect this, as the speech/non-speech errors are quite high due
to mishandling of overlapped speech.

The experimental online system performs reasonably well
given its ad-hoc construction. The novel audio-visual system
was not yet able to improve over the audio-only SDM system
in this evaluation. Although the reasons are yet to be analyzed,
it is not clear that we should even expect the strength of audio-
visual integration to be increased accuracy. In fact, there is
evidence that the primary strength of audio/visual integration
is increased robustness against different noise conditions [34]
— something that is not measured in NIST evaluations.

IX. CONCLUSION AND FUTURE WORK

This article presents the state of the ICSI speaker diarization
system as of the NIST Rich Transcription evaluation for 2009.
The system consists of many components, from preprocessing,
feature extraction, speech activity detection and beamforming,
to initialization and segmentation and clustering. In addition,
several variants of the system competed in the evaluation:
many microphones, single microphones, audiovisual, online,
and offline systems. Future efforts for improving the system
will most likely put more emphasis on robustness against
overlap as well as the estimation of the correct number of
speakers. With the rising trend towards parallelization, speed
gains will most likely lead to better online systems.

The ICSI speaker diarization has been applied in many
domains, from telephone conversations within the speaker
recognition evaluations, to broadcast news and meeting record-
ings in the NIST Rich Transcription evaluations. Furthermore,
it has been used in many applications such as a front-end for
speaker and speech recognition, as a meta-data extraction tool
to aid navigation in broadcast TV, lecture recordings, meetings,
and video conferences and even for applications such as media
similarity estimation for copyright detection. We conclude that
speaker diarization is an essential fundamental technology that
will be used for and adopted to even more application domains
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as more and more people acknowledge the usefulness of audio
methods for many tasks that have traditionally been thought to
be exclusively solvable in the visual domain. The ICSI speaker
diarization engine should serve as a good starting point for
exploring the area and we therefore encourage researchers to
try our system2.
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