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Abstract—In this paper we focus on unsupervised discovering
of acoustic classes suitable for use in pattern recognition appli-
cations. Our approach is based on a two-level clustering of an
initial acoustic segmentation of the audio data in order to allow
for discovery and correct modeling of complex acoustic classes.
Initially, in a first-level, the acoustic space is densely clustered
in order to provide a first layer of acoustic variance reduction.
In a second-level clustering we use the acoustic segmentation to
infer a smaller number of super-clusters taking advantage of
the intra-segment relationships between the first-level clusters.
In this paper we compare three possible clustering methods
to obtain super-clusters as sub-sets or linear combinations of
first-level clusters. Results indicate that the proposed two-level
approach improves the balance between Purity and inverse Purity
evaluation measures while significantly improving the stability of
the transcriptions obtained when using the resulting models to
transcribe the same acoustic events in different spoken utterances.

Index Terms: zero resources, clustering, query by example.

I. INTRODUCTION

In this paper we deal with the problem of automatic
extraction of distinct acoustic classes from recorded audio.
While supervised approaches solve the problem by using large
transcribed corpora from which they learn both the language
structure and its acoustics, unfortunately, the availability of
such transcribed speech corpora is not universal, and their pro-
duction is slow, costly and usually requires a deep knowledge
of the structure of the language. For this reason, unsupervised
approaches do not build classical phoneme based acoustic
models but usually derive their own set of acoustic classes,
that usually have a possible correspondence with the phonetic
structure of the language. With the increasing popularity of
unsupervised approaches to Keyword Spotting and Query-by-
Example tasks [2], [6], [13], [10], the problem of how to
automatically extract acoustic classes from raw speech data
has grown in interest. Still, the question remains in how to
automatically build a set of acoustic classes that can be most
successfully used in such pattern-based speech recognition
tasks.

In previous work, [4] defined a set of acoustic classes by
using a segmental speech model. This approach first defines the
acoustic data as a set of non overlapping segments obtained by
an unsupervised segmentation algorithm that are then clustered
into a predefined number of classes, used later to represent the
data. To model the classes they use polynomial trajectories,

together with a probabilistic model named Segmental Gaussian
mixture model (SGMM). Its main drawbacks are the lack
of a optimal decoding scheme as on novel data the system
first requires an unsupervised segmentation of the acoustic
data prior to labeling. In consequence, the complete decoding
scheme propagates the segmentation algorithm errors.

Other methods like [3] use a similar approach composed
on an unsupervised segmentation followed by a clustering step
that uses Hidden Markov Models (HMM) as models. This
approach allows for the use of an efficient HMM decoding
scheme, avoiding unsupervised segmentation errors to propa-
gate through the decoding step.

A slightly different approach [12] takes advantage of a
Gaussian mixture tokenizer to cluster the segments. An initial
segmentation provides a data breakdown into segments. Then
instead of directly clustering the segments, a Gaussian mixture
model(GMM) is trained by using the complete acoustic data
and then each segment is labeled by using GMM as tokenizer.
This avoids some of the problems coming from the segmental
clustering step. As in many other approaches, the resulting
decoded data in [12] is the basis for a posterior HMM modeling
and embedded re-estimation.

Our objective is to find a set of acoustic classes to later
be useful to transcribe acoustic data such that they provide
us with a stable transcription for the same acoustic events in
different spoken utterances. In order to evaluate the goodness
of our models we measure how the resulting acoustic classes
behave with respect to underlying phonemes by using the
cluster purity and the inverse cluster purity measures. Our
interest is to find a small set of classes that retain as much
as language discrimination power between language acoustic
patterns. In addition, we propose an alternative way to evaluate
clustering by using the resulting transcriptions for a set of
known utterances which contain the same acoustic events. For
this we use Levenshtein distance (usually known as the Edit
distance) in order to compare these transcriptions.

In this paper we present a two level clustering approach
for building an set of acoustic classes in an unsupervised
manner. We initially model the acoustic space with a first-
level dense clustering in order to obtain simple classes while
retaining acoustic resolution. In a subsequent step, we analyze
relationships between initial classes in order to infer a smaller
set of more complex, higher level classes. We investigate three
different clustering approaches in order to obtain these higher



level classes as a subset or a linear combination of the first-
level clusters. Resulting higher level acoustic classes improve
the balance between both evaluation measures while obtaining
significant lower transcription differences in all scenarios.

II. SYSTEM DESCRIPTION

Our approach is based on a two-step clustering scheme.
The objective of the first clustering step is to model the entire
acoustic space. This task requires a big number of clusters
to be able to obtain an accurate enough acoustic resolution
with a high probability of not mixing different underlying
phoneme sources. Despite of that, this first-level clustering
alone is not suitable for the transcription of acoustic data. The
resulting high number of classes in the transcription alphabet
increases the variance of the transcriptions of acoustic data,
where the same acoustic elements get modeled by slightly
different clusters. For this reason we introduce next a second-
level clustering in order to obtain a smaller number of final
clusters, which we call super-clusters. Our objective is to
reduce the variance in transcriptions obtained by using these
clusters, while also maintaining a high purity and inverse pu-
rity values, all important for zero-resources query-by-example
applications.

To illustrate the two-level clustering approach, in Figure 1
an example is given for two phoneme, ’ae’ and ’ao’, extracted
from samples in the TIMIT database. The top-left figure in
Figure 1 shows the two-dimensional projection of acoustic
frames belonging to both phonemes where lines are drawn
between temporally adjacent acoustic frames. The top-right
figure in Figure 1 shows the results of the first-level clustering
and, finally, the bottom figure in 1 shows a possible resulting
second-level clustering where 3 clusters were defined. We can
see that by using a two-level clustering strategy we can create
more complex clusters that better represent the underlying
acoustic data. Next we describe how we obtain each level of
clusters.
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Fig. 1. Schematic view of the proposed approach for a toy (’ae’,’ao’)
phoneme scenario. From upper-left to bottom-right: acoustic segments, first-
level clustering and finally the inferred super-clusters

A. First-Level Clustering

To obtain the first level clustering, we use a vector quantiza-
tion (VQ) scheme in order to produce a compact representation

of the acoustic space, applied to the pool of all acoustic
frames available for training. This approach allows us to
describe the acoustic space as a finite set of non overlapping
classes. In applying VQ, we found the initialization of the VQ
centroids to be a problem. As we wanted to compare different
clustering parameters, variances produced by standard random
initialization of VQ centroids must be avoided.

The approach we used to initialize the VQ centroids is
based on a hierarchical division of the acoustic space. Initially,
all the acoustic data is grouped into a single cluster which its
VQ centroid set at the mean vector. Iteratively, we select and
split the cluster with highest sum of square errors. The cluster
splitting is performed by projecting the cluster points into the
cluster principal axis. The resulting new clusters are formed
as the points projected in positive and negative subspaces. We
found it important to compute the VQ centroids from each
cluster by using the medioid instead of mean function. This
is because using the medioid function avoids the problem of
empty clusters in posterior minimization. After initializing the
clusters, we use a standard distortion minimization algorithm
(k-means) until convergence [11].

B. Second Level Clustering

We propose a two level clustering algorithm as a tool for
obtaining an accurate acoustic resolution and a low number
of final clusters for data transcription. We can define super-
clusters either as a hard set or as a soft mixture of first-level
clusters. Initially we need to establish an heuristic in order to
determine which clusters belong to the same underlying super-
cluster. We do so by describing the acoustic data vectors x as
a set of non overlapping segments and using the segments
as prior. This assumes that the set of acoustic feature vectors
inside each segment belongs to the same super-cluster. This
segmental prior can be estimated by using an automatic
acoustic segmentation algorithm, although in the current work,
in order to independently evaluate the clustering approaches,
we have used the ground truth phonetic transcription. Once the
segmentation has been obtained, the resulting Sm segments are
described by using the accumulated posterior probabilities to
each of the C1

n first level clusters, as show in equation 1. The
resulting matrix DW ∈ Rmxn, describes segments as pseudo
occurrences between clusters and becomes the input for the
second level clustering.

DW (Sj , C
1
k) =

xi∈Sj∑
P (C1

k |xi) (1)

In this paper we explore three different approaches for
second-level clustering, namely Hierarchical agglomerative
clustering (AHC), Probabilistic Latent Semantic analysis
(PLSA) and Non negative matrix factorization (NMF). The
major differences between the approaches come both from the
functional being optimized and from the representation of the
super-clusters being used. Next we will describe how we apply
each of these techniques for the creation of super-clusters.

1) Agglomerative Hierarchical Clustering: We use AHC to
describe super-clusters as disjoint subsets of first-level clusters.
By using matrix DW , AHC iteratively joins clusters which
have a similar behavior with respect to the data until the desired



number of clusters is reached. In merging the closest clusters,
AHC uses the Wards criterion [1] in order to obtain clusters
by minimizing their data behavior variance.

2) Probabilistic Latent Semantic Analysis: Given that dif-
ferent acoustic units might share similar acoustic data (e.g.
silence frames), we could assume that super-clusters should be
a constructed as a mixture of simpler clusters. This leads us to
explore approaches based on matrix factorization techniques,
like Probabilistic Latent Semantic analysis and Non negative
matrix factorization.

Probabilistic Latent Semantic analysis (PLSA) [8] is a
method originally designed for text processing. In document
clustering a set of documents D are composed from a set
of vocabulary words W and the objective is to infer a set
of topics T from the co-occurrences between words and
documents. In fact, PLSA factorizes the frequency matrix
DW ∈ Rmxn into two matrices by means of the inferred
topics DW = DT ∗TW . We use this approach for the creation
of super-clusters by assuming that segments and clusters are
equivalent to documents and words in the text scenario. Then,
the objective is to infer a set of super-clusters as a mixture
of simpler clusters by taking into account the relationship
between clusters and segments.

3) Non-negative Matrix Factorization: Non-negative Ma-
trix Factorization (NMF) [9] factorizes the relational matrix
DW between segments and clusters by assuming that data
can be decomposed into a sum of additive components. Given
a non negative matrix DWmxn and a positive integer k, the
objective is to find two non negative matrixes W ∈ Rmxk,
H ∈ Rkxn such that they minimize the functional given by
equation 2.

f(W,H) =
1

2
||DW −WH||2 (2)

Note that the main differences between PLSA and NMF
come from the function being minimized. In fact, PLSA has
been recognized as equivalent to an NMF model when a
Kullback-Leibler divergence is used as cost function [5].

III. EXPERIMENTS

We perform experiments using TIMIT corpus. In particular,
we use the SA1 set from TIMIT TRAIN corpus to perform
the experiments. This set consists on 420 utterances with the
same text uttered by 420 different speakers. For each utterance
we computed spectral features using a pre-emphasis filter
(factor was set to 0.97) and a 20 millisecond Hanning window
with a 5 millisecond shift. The Mel Filtered spectrogram is
generated by a reference software 4 using 50 triangular Mel
scale filters between 1Hz and 8000Hz. Instead of obtaining
standard MFCC parameters through DCT, we decorrelate the
feature vectors using PCA.

A. Evaluation measures

In order to evaluate clustering results we use the ground
truth phonetic transcription as underlying segmentation of the
data (we plan on using an automatic segmentation in the
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TABLE I. RESULTS FOR 300 VQ AND 47 SUPER-CLUSTER

Method Purity Inv. Purity Levenshtein distance
VQ clustering 64.92% 10.35% 92.75%

Two-level AHC 50.88% 41.96% 63.79%
Two-level PLSA 49.11% 40.73% 68.03%
Two-level NMF 51.74% 38.1% 70.75%

Ground truth 100% 100% 21.9%

future). We first analyze how phoneme labels are mapped into
clusters. To do this we use the cluster purity as defined in equa-
tion 3. Cluster purity evaluates how the resulting K discovered
acoustic classes match with respect to the underlying phoneme
classes. For each of the resulting acoustic classes ci ∈ C,
we compute the cluster purity as the weighted average of the
maximum value among all phoneme probabilities (phi ∈ PH ,
being PH the phone set) in each cluster. Additionally, we
also use the inverse cluster purity measure shown in equation
4 in order to evaluate the dispersion of the phoneme data into
resulting classes.

Purity =

K∑
i=1

max(P (ph|ci)) ∗ P (ci); (3)

InvPurity =

PH∑
i=1

max(P (c|phi)) ∗ P (phi); (4)

In addition, we define a totally unsupervised evaluation
measure based on the Levenshtein distance between data
transcriptions. After mapping the acoustic data segments to
the most likely class and generating the utterance transcription
strings we align each possible pair of transcriptions using a
dynamic programming algorithm and obtain their path length
normalized Levenshtein distance [7]. We use the average
distance among all possible utterance pairs as a measure of
how well can our clustering model unseen data. Ideally, the
Levenshtein distance between several instances of the same
acoustic events should result in a low average value.

B. Result and discussion

Figure 2 shows results for the different proposed ap-
proaches w.r.t. cluster purity and inverse cluster purity as
a function of the number of clusters used in the first-level
clustering. As expected, increasing the number of first-level
clusters also increases the cluster purity, but it produces a
decreasing inverse cluster purity and also a higher average
transcription distance. The reason is that by increasing the
number of clusters we promote smaller clusters that relate to
a very localized acoustic source, which does not map properly
with the underlying phoneme classes.

For this reason, in this paper we introduce a second-
level clustering in order to reduce the number of clusters.
Figures 3, 2 and table I show the purity , inverse purity
and average transcription distance when setting the number
of super-clusters to 47 (similar to the number of phoneme
classes expected in a standard language). In addition, the
ground truth row exposes that despite utterances contain same
text, the resulting pronunciations vary and in consequence their
phonetic transcriptions have some differences. We can observe
that despite loosing a 15% in Purity, we have a significant
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Fig. 2. Purity and inverse Purity evaluation for the different approaches

50 100 150 200 250 300

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of first level clusters

av
er

ag
e 

tra
ns

cr
ip

tio
n 

Le
ve

ns
ht

ei
n 

di
st

an
ce

 

 

VQ clusters (First level clustering)
two-level clustering HAC
two-level clustering PLSA
two-level clustering NMF

Fig. 3. Average edit distance between utterances for the different approaches

increase in Inverse Purity and lower average distance between
transcriptions while decreasing the number of classes by a fac-
tor of 6. Despite that the three second-level approaches obtain
similar Purity and inverse Purity measure, AHC outperform
both NMF and PLSA. We believe that this is caused by their
sensitivity to the cluster initialization, we leave for future work
the task of defining a more deterministic initialization.

IV. CONCLUSIONS

In this paper we proposed a novel approach for the au-
tomatic discovery of acoustic classes from recoded data. Our
approach focuses on obtaining classes that will later be useful
for pattern recognition applications, therefore obtaining similar
transcriptions to similar uttered patterns. Our approach presents
a way to improve classical clustering by taking into account
the segmentation of the acoustic data and introducing a second
clustering level to define more complex clusters. The obtained
results indicate that our approach provides lower differences
between different instances of the same spoken utterances,
while retaining clusters quality evaluations.
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