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ABSTRACT

In this paper we present a system for Query-by-Example Spo-
ken Term Detection (QbE-STD) on zero-resourced languages.
The system compares speech patterns by representing the sig-
nal using two different acoustic models, a Spectral Acoustic
(SA) model covering the spectral characteristics of the sig-
nal, and a Temporal Acoustic (TA) model covering the tem-
poral evolution of the speech signal. On the one hand, the
SA model uses standard Gaussian mixtures to model classical
MFCC features. When creating the model we introduce the
use of phonetically constrained priors in order to bias the un-
supervised training step. In addition, we extend the standard
similarity metric used to compare posterior probability vec-
tors resulting from this model by incorporating inter-cluster
distances. On the other hand, the TA model consists on a long
temporal context model built independently for each feature
dimension. Given a query and utterance to be compared, first
we compute their posterior probabilities according to each of
the two models, compute similarity matrices for each model
and combine these into a single enhanced matrix. Then a
subsequence-Dynamic Time Warping (S-DTW) algorithm is
used to find optimal subsequece alignment paths on this final
matrix. Finally, these paths are locally filtered and globally
normalized. Our experiments on data from the 2013 Spoken
Web Search (SWS) task at Mediaeval benchmark evaluation
show that this approach provides state of the art results and
significantly improves both the single model strategies and
the standard metric baselines.

Index Terms— Query by example, zero resources lan-
guages, unsupervised learning, long temporal context

1. INTRODUCTION
The objective of the QbE-STD task is to search for spoken
audio within a speech corpus without a priori knowledge of
the language or acoustic conditions of the data and is gaining
interest in the scientific community in the later years. Within
the SWS task in the 2013 Mediaeval evaluation campaign [1]
systems are given a set of acoustic queries that have to be
searched for within a corpus of audio composed of around 20
hours of audio and 9 different languages and different record-

ing conditions. No information about the transcription of the
queries or speech corpus, nor the language spoken in each ut-
terance is given to participants. In addition, given that none of
the languages in the dataset has additional extensive resources
available to train full speech recognition systems, this can be
considered as a zero-resourced QbE-STD task.

To tackle this task different approaches has been proposed
in the literature. Many of them [2, 3] make use of posterior-
gram features in order to improve comparison between speech
patterns. Posteriorgram features are obtained as the posterior
probabilities of a an acoustic model evaluated on the input
speech features and allow to consistently compare acoustic
patterns by removing factors of feature variance other than
the content being spoken. Similarly, some approaches [4] take
advantage of the available well trained phonetizer and auto-
matic speech recognition systems to produce posterior repre-
sentation. They are trained using quality annotated datasets
that provide solid models. Despite of that, the performance
of the models degrade when applied to different and mis-
matching data and some sort of adaptation must be applied.
The difficulty at this point relies into how to obtain mean-
ingful acoustic models that provide adequate posteriorgram
features and how to properly compare them to find matching
results. Once an adequate representation of the signal is ob-
tained, query and reference features can be compared through
a similarity matrix were the query is searched inside the ref-
erence by using the S-DTW [5] algorithm.

In order to improve the matching accuracy, some ap-
proaches [6] perform a fusion of the similarity matrices be-
tween query and utterance obtained from different feature
posteriorgrams. Despite of that, it is important to determine
which types of information can better complement each other
in order to guarantee a performance gain for the extra compu-
tational cost. Many studies support that temporal and spectral
information are complementary and crucial for speech pro-
cessing by the human auditory system [7]. The exploitation
of temporal information for supervised acoustic models has
been widely studied in [8]. The temporal evolution is modeled
for each band of the acoustic features by extracting temporal
vectors on fixed time intervals. The resulting vectors are
modeled with respect a phonetic classes using a supervised



classifier. The resulting posteriors are then used to train a
parallel grammar phonetizer using hidden markov models.

In this paper we present a system based on pattern match-
ing and fusion of different knowledge sources. Instead of fus-
ing different languages information we choose to combine the
speech representations of the signals obtained from temporal
and spectral models in a quasi-unsupervised manner. In or-
der to improve the acoustic modeling with the unsupervised
data, our approach is to drift the unsupervised training to-
wards meaningful information by introducing linguistic pri-
ors. We obtain those priors from an annotated data set that
mismatches in language and acoustics with respect the exper-
imental corpus. We believe that zero resource languages can
take profit from the available well studied languages, this may
be given by certain amount of shared acoustic structure [9].

In addition, instead of using the standard cosine similarity
to compare posteriorgram features, we extend this approach
by incorporating to the comparison a specially crafted matrix
defining an inter-cluster dissimilarity.

In order to find matching sequences we use a memory effi-
cient subsequence-dynamic time warping algorithm (s-DTW)
[10]. With it we obtain the alignment paths and the scores of
all the potential matches of the queries inside the reference
utterances. Finally, We explore two different approaches to
global score normalization: the standard Z-norm approach
and score mapping based on continuous density function.

2. SYSTEM DESCRIPTION

Figure 1 summarizes the system proposed. Initially, standard
MFCC39 features computed at 25ms windows size and 10 ms
shift time. We apply cepstral mean and variance normaliza-
tion to both query and utterance at file level. We then use the
spectral-acoustic model and the temporal-acoustic model to
convert the input features into posterior probability vectors,
which are then combined into a single similarity matrix to
allow for search of the query into each utterance. We use sub-
sequence dynamic time warping to determine optimal align-
ment paths on this matrix. Then we filter and normalize the
results to determine the final hypothesized hits for each query.
Each of these steps is further described below.

2.1. Spectral Acoustic Model

The SA model is based on a Gaussian mixture model (GMM).
GMM models trained from acoustic data with no supervision
have been reported as a successful way to model broad acous-
tic classes [2]. Despite of that, data preparation and model
initialization are tricky steps that condition the model and
therefore the performance of entire system. There is a lack
of methods to asses the quality of the obtained model with
respect the representation of acoustic classes in the data, es-
pecially the ones which are meaningful for the task. Alterna-
tively, adaptation approaches can provide ways to apply well
trained supervised models to new data. We would therefore

Fig. 1. Schematics of the system. Two acoustic models gen-
erate pairwise distances between query and reference. The
matrices are fused into a single matrix were alignment paths
are searched and filtered.

like to transform a GMM model trained in a supervised man-
ner from out-of-domain, out-of-language data to fit the target
data specific acoustic conditions. Although different unsuper-
vised adaptation approaches exist [11, 12] we introduce here
some linguistic prior information to the unsupervised training
by using a specific pre-trained model as initialization.

We originally trained the model using TIMIT phonetic
ground truth. In particular, we trained a 4 gaussians GMM
for each of the 39 Lee and Hon [13] phonetic classes and then
combined all of them into a single GMM model. This GMM
is then used as initialization for an unsupervised training of
the final 156 components model (39x4) using the Mediaeval
2013 database. The idea is to bias the unsupervised learning
towards a phonetic like structure and solve the problem of a
proper initialization of the model. We assume that normal-
ization on the data (CMVN) together with the dense GMM
model structure will inhibit the unsupervised training from
substantially modifying the original GMM structure.

2.1.1. Comparison of posterior vectors

Cosine similarity is generally used to compare posterior
probability vectors [2]. Such measure has been shown as
similar but slightly superior to other measures including the
Kullback-leibler divergence [14]. Assuming sx, sy ∈ <156

being posterior probability vectors of the acoustic model for
a given pair of acoustic vectors x, y, the cosine similarity is
defined in equation1. In addition to its geometric interpreta-
tion, it can be seen as the posterior probabilities of x and y to
belong to the same cluster.

Cossim(sx, sy) =
sxs
>
y

‖sx‖ ‖sy‖
(1)



Despite of that, we want to take into account similarity
between posterior vectors and also penalize for the dissimi-
larities from the underlying acoustic classes. In consequence,
we include a distance matrix into the similarity formulation.
The distance matrix we use is defined as

Weightsim(sx, sy) = sxe
−Ds>y (2)

where D ∈ M156x156[<] is the Kullback Leibler-divergence
(KL) between each pair of Gaussian components in the acous-
tic model. Given a pair of Gaussian components (i, j), let
µi, µj be the mean vectors and Σi,Σj the covariance matri-
ces, then the KL divergence is shown equation3.

D(i, j) =
1

2
(log(

|Σi|
|Σj |

) + tr(ΣiΣj + ΣjΣi − 2I)

+(µi − µj)(Σi + Σj)(µi − µj)
>) (3)

2.2. Temporal Acoustic Model

The objective of the temporal acoustic model is to use the in-
formation on the dynamics of the signal with a longer time
span than the standard MFCC features can provide, therefore
becoming a good complement to the spectral acoustic model.
The temporal acoustic model is based on a long temporal con-
text approach [8] trained on a different dataset than that used
for testing (in this case, we train the models using the search
databases used in the Mediaeval 2012 evaluation [15]). Each
of the 39 dimensions in the MFCC39 vector are modeled in-
dependently. The choice of using MFCC domain features for
this model is motivated by the fact that these dimensions are
mostly decorrelated and thus can be modeled independently.
Initially, given some training data, we first segment it by using
an unsupervised phonetic segmentation approach [16] and ex-
tract a 150 ms context from the center of each of the segments
forming a collection of <31 vector. Each context vector is
standardized to zero mean and unity variance, windowed us-
ing a Hanning window, and decorrelated using discrete cosine
transform to finally choose the first 15 coefficients to become
the final <15 vector. The modeling is initialized by hierarchi-
cal k-medioid together with a final Expectation Maximization
(EM) iteration to estimate the covariance matrices. The re-
sulting model is composed of a Gaussian Mixture model of
128 components for each of the original 39 dimensions.

The comparison between two input vectors x, y is done in
each of the b dimensions independently using the posteriors
pbx, p

b
y ∈ <128 obtained by the band temporal model. Pos-

teriorly, we fuse the results from each band using equation4.

dt(x, y, b) =
pbxp

b>
y

‖pbx‖
∥∥pby∥∥

dt(x, y) =
1

B

B∑
b=1

−log(dt(x, y, b)); (4)

2.3. Query Search

For each pair of query Q = {q1 . . . qN} and utterance
U = {u1 . . . uK} sequences, we build a distance matrix
M ∈ MNxK [<≥0] by combining the similarity matrices
from the SA and TA models as:

M(qi, uj) = −log(ds(si, sj)) + dt(qi, uj); (5)

We then use S-DTW to obtain the optimal alignment
paths between every Q and U . In doing so, we incorporate a
penalty term to each of the possible alignment steps in the S-
DTW equation. We define the local constraints for S-DTW as
shown in 6 where C is the resulting accumulated cost matrix
and P = {P1, P2, P3} is a vector of positive penalties. We
experimentally found P = −log(

[
0.6, 0.6, 0.8

]
) to be opti-

mal. The penalties work together with the temporal model to
avoid the presence of heavily warped paths.

C(i, j) = M(i, j) +min(

 C(i− 1, j) + P1

C(i, j − 1) + P2

C(i− 1, j − 1) + P3

) (6)

The major difficulty at this point relies in how to decide
which ones of the found alignments are acceptable as po-
tential query-utterance hits and how to deal with intra-inter
query results overlap. In order to select relevant local maxima
scoring paths, we first lowpass filter the accumulated scores
M(qN , ui)|∀iε1 . . .K by using a 25 frames Gaussian win-
dow. Nonetheless, the resulting selected alignment paths re-
tain their original score values. We solve intra-query over-
lap by selecting the best scoring path, but become difficult to
solve the overlap between the detection of different queries
at utterance level without priors about their score distribu-
tions. As a result, we perform exclusively a global normal-
ization and independent filtering of the query results, leaving
the inter-query overlap problem for future work.

2.4. Global normalization

When all utterances have been processed for a given query,
we perform a global normalization of the possible matches.
This normalization step is critical when querying the database
with multiple queries because we have to set up a query-
independent threshold to separate between false alarm and
true detections. The queries have different acoustic charac-
teristics and the score distribution of their search results are
also different. In order to align those distributions we ini-
tially used a standard Z-normalization approach. For this, we
first excluded the top best 500 results from the parameter es-
timation to avoid true matches from biasing the normaliza-
tion. Alternatively we have also explored a different approach
for normalizing scores. Similarly to contrast enhancing per-
formed by histogram equalization in image processing [17],



our approach replaces resulting query scores with their cor-
responding value at the query probability continuous density
function (cdf). This effectively maps the scores distribution
into a uniform distribution and the cdf becomes a linear func-
tion.

3. EXPERIMENTS AND RESULTS

We have used three databases in our experimental setup. The
phonetic model used to initialize unsupervised training of the
SA model has been build using the 4620 utterances in the
TIMIT training corpus [18]. The subsequent unsupervised
training has been performed using the development set of the
Mediaeval 2013 database. Concretely, we used the search ut-
terances and the development query set to represent the acous-
tic space. In addition, the TA model was trained using the
African database from Mediaeval 2012 [15]. This corpus con-
sists of 1580 utterances plus 100 queries collected from 4 dif-
ferent African languages. Finally, the evaluations of the sys-
tems have been conducted on the development and test sets of
the Mediaeval 2013 database.

The QqE-STD task requires the systems to perform lan-
guage independent audio search. Given an audio query, sys-
tems should be able to locate the appropriate files and the lo-
cation of the query term within the audio files. We evaluate
the system performance using Term Weighted Value (TWV)
as proposed by NIST in [19]. In this paper we show the
maximum term weighted value (MTWV) and the actual term
weighted value (ATWV), which are the primary metrics of the
SWS-2013 evaluation.

Initially we evaluate the gain obtained by each of our
processing steps on the development dataset. The Baseline
system uses only the SA model and the standard cosine sim-
ilarity measure. Alternatively, Baseline + DMatrix takes into
account the inter-cluster matrix the cosine similarity. Fi-
nally, the last system evaluated also takes into account the TA
model. Table 1 shows how both additions help to increase the
resulting performance, being remarkable the gain obtained by
taking into account both acoustic models.

With respect to the normalization step, Table 2 shows the
complete set of results obtained by our best system using dif-
ferent normalization functions. We can see how CDF equal-
ization obtains better results than the Z-normalization.

Finally, Figure 2 shows the DET curves for the systems
shown in Tables 1 and 2. The curves are deliberately short
because the system is defined to limit the number of hypothe-
sized hits in order to reduce highly penalizing false alarms in
the output. When comparing the figures it is important to note
the big improvement of combining the TA model with the SA
model. Also important is the change of tilt resulting from
applying CDF normalization. While in the lower false-alarm
region the Z-norm seems to perform better, when false-alarms
increase and in overall, the DCF normalization achieves best
results.

System CDF norm. Z norm.
Baseline (SA model) 0.1699-0.1688 0.1606-0.1593
Baseline + DMatrix 0.1868-0.1865 0.1734-0.1734
Baseline + DMatrix + TA Model 0.2878-0.2863 0.2693-0.2690

Table 1. MTWV-ATWV scores on the development set for the
different systems, using both proposed normalizations

Normalization Dev. set Eval. set
CDF equalization 0.2878-0.2863 0.2688-0.2673
Z-normalization 0.2693-0.2690 0.2561-0.2520

Table 2. Complete system results: MTWV-ATWV for the pro-
posed system (SA model + DMatrix + TA Model) using both
proposed normalization schemes
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Fig. 2. DET plots for the presented systems

4. CONCLUSIONS

In this paper we have presented a system for query-by-
example spoken-term detection on zero-resources languages
that uses information about spectral configuration and tem-
poral evolution of the acoustic features. The fusion of both
knowledge sources improves significantly the performance
of the baseline system. In addition, we have extended the
standard measure for comparing posterior features such that
the extended measure provides an additional extra perfor-
mance boost of about 9% percent relative over the standard
approach. Finally, we have presented a different approach
to score normalization of the resulting hits for each query.
Over all, the proposed system improves in 69% relative the
considered baseline approach and achieved very competitive
results within the Mediaeval SWS 2013 evaluation.

REFERENCES

[1] Xavier Anguera, Florian Metze, Andi Buzo, Igor
Szoke, and Luis Javier Rodriguez-Fuentes, “The spo-



ken web search task,” in MediaEval 2013 Workshop,
Barcelona, Spain, October 18-19 2013.

[2] Yaodong Zhang and James R Glass, “Unsupervised
spoken keyword spotting via segmental dtw on gaus-
sian posteriorgrams,” in Automatic Speech Recognition
& Understanding, 2009. ASRU 2009. IEEE Workshop
on. IEEE, 2009, pp. 398–403.

[3] Timothy J Hazen, Wade Shen, and Christopher White,
“Query-by-example spoken term detection using pho-
netic posteriorgram templates,” in Automatic Speech
Recognition & Understanding, 2009. ASRU 2009. IEEE
Workshop on. IEEE, 2009, pp. 421–426.

[4] Amparo Varona, Mikel Peñagarikano, Luis Javier
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