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Abstract. We describe the latest version of the SRI-ICSI meeting antlite
recognition system, as was used in the NIST RT-07 evalustibighlighting
improvements made over the last year. Changes in the acqusfprocessing
include updated beamforming software for processing oftipial distant mi-
crophones, and various adjustments to the speech segnfentdose-talking
microphones. Acoustic models were improved by the combirse of neural-
net-estimated phone posterior features, discriminage¢ufe transforms trained
with fMPE-MAP, and discriminative Gaussian estimationngsMPE-MAP, as
well as model adaptation specifically to nonnative and nameAcan speakers.
The net effect of these enhancements was a 14-16% relativereduction on
distant microphones, and a 16-17% error reduction on dal&eig microphones.
Also, for the first time, we report results on a new “coffeedi’emeeting genre,
and on a new NIST metric designed to evaluate combined spbaghation and
recognition.

1 Introduction

This paper documents the latest in a series of speech reamgsystems [1-3] jointly
developed by SRI International and the International Campbcience Institute (ICSI)
for participation in the annual NIST Rich Transcription axadions focused on meeting
processing (starting with RT-02S in Spring 2002, throughORThis year). We give a
self-contained overview of the recognition system, whieusing on new aspects of
the current version, including several improvements matteghe evaluation proper.
Since the beginning or our research on meeting recognitierhave based our sys-
tems on existing systems developed for conversationgitielee speech (CTS) recog-
nition, by borrowing the decoding architecture and by aishggeicoustic models trained
originally on telephone corpora. This year, given incregsamounts of in-domain
meeting training data, we evaluated if such an adaptatiatesfy is still worthwhile. We
then focused on improvements to the acoustic preprocessghiigh aims to minimize
the mismatch between meeting speech and our existing acoostiels. New beam-
forming software for distant microphones and updates tepleech segmenter used for
close-talking microphones resulted in improvements iiir tiespective conditions.



Next, we applied several techniques to improve the way amom®dels originally
trained on CTS and broadcast news (BN) speech are adaptesiiteeting and lecture
domain. One successful approach was the combination & tliseriminative modeling
techniques, at the level of features, feature transformd,@aussians [4], modified
to work in an adaptive fashion. We also achieved gains bynmagpecial attention
to nonnative and non-American speakers in model adapfaiooe those dialects are
underrepresented in our background training corpora vidgileg more pervasive in the
meeting test data.

No significant changes were made to the language modelsndégoorporating
additional training data from the AMI project. As we will shigthis additional data had
limited effect, and improved results solely on AMI meetiegttdata.

2 Task and Data

2.1 Test data

Evaluation data The RT-07 evaluation data (eval07) was divided into threeiqus
according to meeting genre: conference meetings (confietgyire meetings (lectmtg),
and coffee breaks (cbreak), the latter being a more inigeagariant of the lecture
room setup. The conference data consisted of excerpts froraedings recorded at 4
sites in the U.S. and Europe (CMU, Edinburgh, NIST, and ViigiTech), totaling 3
hours in duration. The lecture data was collected at 5 @iffeCHIL-consortium sites
(AIT, IBM, ITC, UKA, and UPC), and comprised 32 lecture exgtsrtotaling 2.7 hours.
Coffee break data originated from the same 5 sites and adutdQu7 hours.
Separate evaluations were conducted in three acoustidtioorsd

MDM multiple distant microphones (primary)
IHM individual headset microphones (required contrast)
SDM single distant microphone (optional)

Lecture and coffee break rooms had more extensive instriati@m and provided the
following additional conditions:

MSLA multiple source localization array microphones (optipnal
MM3A multiple Mark-IIl microphone arrays (optional)
ADM all distant microphones (optional)

Although NIST evaluates recognition error on all speectiuding portions where
speakers overlap, our recognition system presently igrtbie fact, and was optimized
for non-overlapping speech. Consequently, all resultsgareed here exclude overlap-
ping speech in the distant-microphone conditions, unlessdotherwise.

Development data The NIST RT-06 (eval06), and to a lesser extent, RT-05 (&)al0
evaluation data sets were used as development data. Legtiesn development used
eval06 only, and confmtg results on eval05 were somewhabdiged since eval05

contains one data source (ICSI) that yields very low errtgsand does not occur in
more recent test sets. Several system parameters (suckcasimg weights) had been
optimized on even older NIST evaluation sets, and have nen bbe-tuned this year.

Also, due to the paucity of lecture development data, thasarpeters were never tuned
specifically for the genre, and simply copied from the comfsytstem.



Table 1. Comparison of old and new beamforming implementation imgeof word error rates

(WER) using RT-06 recognition models.

eval06 confmtgeval06 lectmtgy
MDM  |MDM| ADM

RT-06 beamformer 34.2 55.5| 51.0

Beamformlt v2.0 33.9 55.8| 46.6

2.2 Training data

In-domain training data for the conference room consisfédessame meeting record-
ings from AMI, CMU, ICSI and NIST as used in previous yearsisphdditional data
released by AMI and NIST since RT-06. The total amount of IHMadwas about 213
hours after speech/nonspeech segmentation (AMI: 100 nggetl00h; CMU: 17 meet-
ings, 11h; ICSI: 73 meetings, 74h; NIST: 27 meetings, 28h).

The training data aimed at the lecture domain was unchamgedést year—due to
time constrains we did not make use of some new lecture afelchfeak data released
prior to RT-07. As a result, the only lecture-type data usedasabout 7 hours of CHIL
training data (close-talking microphones only), the CHiv@6 distant-microphone
development data, and about 9 hours of transcribed lecava&itable as part of the
Translingual English Database (TED) [5].

As in previous years, we used background models trainedd@®85 and BN cor-
pora for adaptation to the meeting and lecture domains.élrbesof-domain corpora
included about 2300 hours of telephone speech from the Blwotrd, CallHome En-
glish, and Fisher collections, and about 900 hours of BN ftata the Hub-4 and TDT
corpora.

3 System Description and Development

3.1 Signal processing and segmentation

Distant microphone processing All distant microphone channels (in both training
and test) were Wiener-filtered for noise reduction using terfileveloped for the
Qualcomm-ICSI-OGI Aurora system [6], identical to prewsorears [2].

Subsequently, for the MDM, MDM, MSLA, and MM3A conditions,delay-and-
sum beamforming technique was applied to combine all dvaildistant microphone
channels into a single “enhanced” channel. The algorithed weas essentially the same
as last year [7], but used a new implementation that is frae#flable under the name
Beamformlt (version 2.0) [8].

Once the enhanced signal was generated, speech regionsdemstiied using a
speech/nonspeech two-class HMM decoder. Resulting ségmame combined and
padded with silence to satisfy certain duration constsaimat had been empirically op-
timized for recognition accuracy. The algorithm and modetse unchanged from last
year [2]. Finally, the segments were clustered into acoakyihomogeneous partitions,
which served as pseudo-speaker units for normalizatiomdaptation. This aspect was
also identical to last year’s system.



Table 2. Comparison of IHM speech/nonspeech segmentation withwlitvgth per-channel en-
ergy normalization for cross-channel feature computatiord for recognition from reference
segments. eval06 results were obtained with the RT-06 réthog system, eval07 results with
the current system.

eval06 eval07
confmtg lectmtgconfmtg lectmtg
W/o energy norn|. 24.0 | 30.8 | 25.6 | 29.5
with energy norr. 22.8 | 31.7 | 25.7 | 30.5
Reference seg. | 20.2 | 29.3 | 22.8 | 28.1

To assess the effect of the new beamforming implementatiar@ognition perfor-
mance, we reprocessed the eval06 data with Beamformitremdran RT-06 confmtg
and lectmtg systems that were otherwise unchanged. Tallewssthat that MDM
performance is virtually unchanged, but that ADM is much ioyed. This seems to
indicate that the new implementation is more robust to loggemeous and/or very large
sets of microphones.

Close-talking microphone processing The IHM input channels are segmented
(without Wiener filtering) into speech and nonspeech regjiosing an HMM-based
speech/nonspeech segmenter [9]. The segmenter is a tas+ddM decoder with
each class represented by a three-state phone model. Tée ata modeled by 256-
component multivariate Gaussian mixtures with diagonehdance matrices. The seg-
mentation proceeds via decoding of the full IHM channel vilaxra, potentially in a
multi-pass fashion with decreased transition penalty betwthe speech and nonspeech
classes. This is done so as to generate segments that daaetlé60 seconds in length.

Last year we had introduced a combination of single- andsechannel features
designed to allow discrimination of foreground speech fiass-talk (which should
not be recognized). The single-channel features consis2tif-order Mel-frequency
cepstral coefficients (MFCCs), log-energy, and first andsddifferences. The cross-
channel features are maximum and minimum log-energy diffees. The log-energy
difference represents the log of the ratio of the short-e&mergy between a given target
channel and a nontarget channel. The maximum and minimunesalre selected to
obtain a fixed number of feature components, given that tiebeun of channels varies
between meetings. All features are computed over a windo@bofns advanced by
20 ms.

Following RT-06, we modified these features by normalizing ibg-energies per
channel prior to computing cross-channel features, withgibal of accounting for dif-
ferences in noise floors and gains. This technique gavelerteésults on conference
meetings, eliminating cross-talk even from speakers fanwbnly distant-microphone
recordings were available [9]. However, when we evaluatesl mew feature (per-
channel energy normalization) on lecture data and curesttdets, a mixed picture
emerged, as shown in Table 2. It seems that the energy naatiafi does not improve
the result on eval07 confmtg data, and in fact degrades acgwn lecture data by
about 1% absolute. Further investigation is needed to stated the reasons for this
inconsistent behavior.



Table 3. Effect of adjusting speech/nonspeech prior probabili#éisesults obtained with RT-07
recognition systems (hence eval06 results differ from &l

eval06 eval07
confmtgconfmtglectmtgcbreak
Old priors 219 | 257 | 30.5| 31.2
New priors 20.2 | 240 | 29.5 | 30.6
Reference seg. 19.1 | 22.8 | 28.1 | 29.5

We also observed that there is still a considerable WER g&p3% absolute) be-
tween automatic and reference segmentation, largely daéhigh deletion error rate.
Running our confmtg recognizer on the AMI system’s segntenigput gave a marked
improvement, from 25.7% to 24.0% WER. In an post-evaluagiperiment we tuned
the speech/nonspeech prior probability used by the segmenteval06 confmtg data,
and were able to obtain the same improvement. Furthermsh@wn in Table 3, the
prior adjustment resulted in recognition improvementssgmall meeting genres.

No speaker clustering was performed on the IHM channelsgsinwas assumed
that each IHM channel corresponds to exactly one speaker.

3.2 Acoustic modeling and adaptation

Decoding architecture To motivate the choice of acoustic models, we first describe
the decoding architecture, which is unchanged from last, yaspicted in Figure 1.
An “upper” (in the figure) tier of decoding steps is based onQd@Heatures; a parallel
“lower” tier of decoding steps uses perceptual linear prtgath (PLP) features. The out-
puts from these two tiers are combined twice using word csinfunetworks (denoted
by crossed ovals in the figure). Except for the initial deagdi the acoustic models
are cross-adapted to the output of a previous step from gpective other tier using
maximum likelihood linear regression (MLLR). Lattices generated initially to speed
up subsequent decoding steps. The lattices are regeneratedater to improve their
accuracy, after adapting to the outputs of the first comimnagtep. The lattice gen-
eration steps use noncrossword (nonCW) triphone modetsdecoding from lattices
uses crossword (CW) models. Each decoding step generétes kittices or N-best
lists, both of which are rescored with a 4-gram language mad#); N-best output is
also rescored with duration models for phones and pauségs [10

The final output is the result of a three-way system combamadf MFCC-nonCW,
MFCC-CW, and PLP-CW decoding branches. The entire systesinunder 20 times
real time (20xRT)

Basgline models and test-time adaptation The MFCC recognition models were de-
rived from gender-dependent CTS models in the RT-04F systénh had been trained
with the minimum phone error (MPE) criterion [11] on abouf0ours of data. (All
available native Fisher speakers were used, but to savenaiime, statistics were
collected from every other utterance only). The MFCC modsisd 12 cepstral coef-
ficients, energy, first-, second-, and third-order diffeenfeatures, an?l x 5 voicing

4 Runtimes given assume operation with Gaussian shor@gtse RT-07 did not impose a run-
time limit we ran the system without shortlists, in about R%x
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Fig. 1. SRI CTS recognition system. Rectangles represent decatipg. Parallelograms repre-
sent decoding output (lattices or 1-best hypotheses)d &olows denote passing of hypotheses
for adaptation or output. Dashed lines denote generatiarserof word lattices for decoding.
Crossed ovals denote confusion network system combinstéps.

features over a 5-frame window [12]. Cepstral features wereputed with vocal tract
length normalization (VTLN) and zero-mean and unit vare@aper speaker/cluster. The
62-component raw feature vector was reduced to 39 dimensisimg heteroscedas-
tic linear discriminant analysis (HLDA) [13]. After HLDA, &5-dimensional Tan-
dem/HATs feature vector estimated by multilayer percergr(MLPs) [14, 15] was
appended. Both within-word and crossword triphone modeeevirained, for lattice
generation and decoding from lattices, respectively. Pldélets were based on full-
bandwidth analysis, producing 12 coefficients, energyt-fisecond- and third-order
differences, and then reduced to 39 dimensions using HLNAMpicing or MLP fea-
tures were used in this case.) These models were origimallyetd on about 900 hours
of broadcast news data from the Hub4, TDT2, and TDT4 cobecti PLP models are
gender-independent. All models were trained using detisi®e-based state tying.

In testing, all models undergo unsupervised adaptatidmgtéetst speaker or cluster,
using MLLR with multiple, data-induced regression claget. The first MFCC and
PLP adaptation passes used a phone-loop reference maeepdases adapted to prior
recognition output. In addition, all but the first decodinged constrained MLLR in
feature space, which was also employed in training (spesdegptive training) [16].

MLP feature adaptation As in past years, we adapted the MLPs for Tandem and
HATs feature computation to the meeting domain by runningdjtamhal MLP training
iterations on meeting data, starting with the CTS-trainddP8l We showed previously
that this type of adaptation yields about the same improwtsrees MAP-adaptation of
Gaussians alone [17]. In fact, as an expedient we used tipteatislLPs from last year,
i.e., without taking advantage of the new acoustic trairdata and using conference
meeting data only. For distant-microphone recognitioa Nt Ps were adapted to both



Table 4. Meeting recognition results using CTS training data, usitffCC maximum likelihood
models and a simplified, 1-pass recognition system.

[Training data leval05 IHM confmtg
Fisher 400h 34.0
Confmtg 100h, 8kHz 334
Confmtg 100h, 16kHz 31.7
Fisher + confmtg, 8kHz (poolef) 31.9
Fisher + confmtg, 8kHz (MAP) 315

Table5. Meeting recognition results using adaptation to nonnath@non-American CTS speak-
ers, using MFCC ML-MAP models based on native-English Fisla¢a and a simplified, 1-pass
recognition system.

|[MAP adaptation data |evalO6 IHM lectmtg
confmtg 100h 41.9
Fisher nonnative/non-American ZZOh 40.5
confmtg + Fisher nonnat./non-Am. 40.0

distant and close microphone recordings, whereas MLPsHM tecognition were
trained on close-talking microphones only.

Acoustic model adaptation In preparation for this year’'s evaluation, we conducted
several experiments to determine the best training styatéigst and foremost, we
wanted to confirm that adapting CTS models to the meeting domas still a prof-
itable approach. It entails downsampling meeting data téz8kaising the question if
the attendant loss of information was more than compengatdoly the added data.
Table 4 summarizes some relevant results.

Models were trained on 400 hours of Fisher CTS data, as welhase 100 hours
of meeting speech available for RT-06, and tested on eval@fhtg. We found that
the downsampling of meeting data indeed incurs a signifi&®it relative error rate
increase. However, this was almost made up for by simplyipgthe CTS and (down-
sampled) meeting data. By using MAP adaptation, which gieedrol over the weight-
ing of the in-domain versus background data, we were abl@tslightly better than
the meeting-only broadband models (31.5% versus 31.7% \WEBt)sidering that the
actual amount of CTS background data available is 5 timed®dhours used in this
experiment, we concluded that it was a safe bet to contina®thP-adaptation strat-
egy.

The next issue we addressed was the high percentage of tiva-aad non-
American speakers in the meeting and lecture data. Spakittgethe eval06 lecture
data, for example, we found that almost all of it involvedagers with various Euro-
pean accents, most of them nonnative. The mismatch to out@éi&yround data was
exacerbated by the fact that nonnative and non-Americaaksps had been excluded
from our CTS training set (in accordance with past CTS evaloaets). We therefore
collected this previously excluded CTS data in a separaiptation training set, com-
prising 220h in 1324 conversation sides, and performed t@stevalO6 lectmtg data,
summarized in Table 5.

The results are quite dramatic, in that adapting the backgtomodels to
nonnative/non-American CTS data yields better perforradhan adapting to confmtg



Table 6. Results with different MAP adaptation criteria using coatplrecognition systems.

(a) (b)

eval06 IHM eval06 MDM
Adaptation method confmtg{lectmtg Adaptation method confmtg{lectmtg
ML-MAP 228 | 34.1 ML-MAP 33.7 | 58.3
MMI-MAP n/a 29.8 fMPE-MAP+MPE-MAP, 30.9 | 48.6
fMPE-MAP 22.3 | 28.7 +ML-MAP(lect-dev06)| n/a 47.8
fMPE-MAP+MPE-MAP, 22.2 | 26.3

data. This clearly indicates that nativeness is one of thpmiactors of mismatch
between the CTS and meeting data. As is to be expected, comgléonfmtg and
nonnative/non-American CTS data in adaptation yields &t kesults. As a result of
these experiments, we added the previously excluded Fsgfeskers to our meeting
adaptation data for MFCC model training. Note that this deta not added to the BN-
based PLP model training data, both because of the bandwmidthatch and because
BN data is already more heterogeneous in its dialectal n@mkeu

fMPE-MAP In addition to MLP feature adaptation and MAP adaptatiorhefGaus-
sian models, we also employed a discriminative featurestomm known as fMPE [18].
A sparse high-dimensional feature vector generated byskauposteriors is mapped to
the standard low-dimensional feature space via a transf@aimed using the minimum
phone frame error (MPFE) [11, 19] criterion, and combineditacely with the stan-
dard features. However, we used a novel variant of fMPE ddMPE-MAP, in which
the transform is estimated only on adaptation data, basedpre-trained non-fMPE
reference model (our CTS and BN background models). We faoadfMPE-MAP
gave better results than fMPE on the combined backgroundaddmain data, while
taking much less training time [20]. The Gaussian postsiigput to the fMPE trans-
form were based on PLP features from a 5-frame window, fan be¢ MFCC and PLP
fMPE-MAP models.

Table 6(a) compares results with ML-MAP, MMI-MAP (the methased last year),
fMPE-MAP, and fMPE-MAP followed by MPE-MAP for IHM recogndn, using com-
plete recognition systems in which both MFCC and PLP modatsieen trained us-
ing the respective estimation criteria. The discriminativethods yield small gains on
confmtg data, but substantial gains on lectmtg data. Réwatlalmost all the adapta-
tion data is from the confmtg domain, highlighting the fdwttdiscriminative training
greatly enhances the generalization of acoustic modeta Adte that MPE-MAP still
gives substantial gains on top of fMPE-MAP in the case ofggttest data. The com-
bined WER reduction is by 2.6% relative on confmtg and by 28%tive on lectmtg.

Adaptation for distant microphonerecognition Models for recognition from distant
microphones were obtained by pooling all close-talking disant-microphone data
for adaptation purposes (similar to MLP adaptation). T&l{l® shows ML-MAP and

fMPE-MAP+MPE-MAP results for MDM recognition. The gain®fn discriminative

adaptation are again substantial: 8.3% for confmtg and brdéétmtg. However, since
the adaptation set contained only a very small amount obimain MDM lecture data
(the dev06 set), we felt that the models for that domain mighimproved further by



Table 7. Effect of language model update on recognition performadifferentiated by test data
source

eval06 confmtg
LM IHM MDM
AMI [non-AMI|AMI |non-AMI

200620.1 23.2 |28.9] 32.9
200719.6] 23.1 |26.9] 33.4

giving extra weight to the matched data. This was accomgtidhy a final ML-MAP
step using lectmtg-dev06 data only. As shown in the last owable 6(b), this indeed
yielded a further 1.6% relative error reduction. The résgltmodels were used in both
lecture and coffee break recognition (since both were dEmbunder the same acoustic
conditions).

3.3 Languagemodels

Language models (LMs) for the RT-07 system had the sametstauas in previous
year, consisting of an interpolation of various genre-gfsetMs, including confer-
ence transcripts, lectures, CTS, BN, web data, and corderproceedings [21]. LMs
specific to confmtg and lectmtg genres were obtained by fiqnperplexity-minimizing
interpolation weights on held-out of the respective type.

The only change for this year's system was the addition of Adt¥ and NIST
conference meeting transcripts. While this almost douliedamount of in-domain
LM data, we found only small gains in overall recognition @@y, as shown in Ta-
ble 7. Since most of the new data came from the AMI data cadiectve broke eval06
recognition results down according to whether the test mgetame from an AMI
site (Edinburgh or TNO) or not. It becomes evident that thditaghal training data
helps significantly on AMI test data, but not on other data.afgbute this to the spe-
cial scenario-driven character of the AMI meetings. Ssilhce the RT-07 test set was
expected to contain AMI sources as well, we incorporatedudated LM into our
confmtg system. On lectmtg tests, however, the new LM dai@demna impact whatso-
ever, so we simply kept last year’s lectmtg LM. The lecture Wisk also used in coffee
break recognition. We again note that, due to time congaione of the CHIL lecture
data released since RT-06 was used in LM training.

3.4 Speaker clustering revisited

As mentioned, our distant-microphone recognition systeougs waveform segments
into pseudo-speaker clusters for feature normalizati@hraodel adaptation purposes.
However, we had found in previous years that this clustesligitly degrades perfor-
mance on lecture data, presumably because the lecture isal®a by a single speaker
and the clustering algorithm is not accurate enough to ifyesthall sets of non-lecturer
speech. Therefore, the RT-07 system again used only a sihgder for lecture recog-
nition.
Post-evaluation we revisited this decision and checkeetieet of different clus-

tering parameters for all genres. Three configurations waze: 1 cluster (the default



Table 8. Effect of acoustic clustering parameters on MDM recognit@curacy. Values chosen
in the RT-07 evaluation system appear in boldface.

eval06 MDM eval07 MDM
Clusteringconfmtglectmtg confmtg lectmtg cbreak
1 cluster 47.8 446 | 44.0
4 clusters| 30.3 26.2 4.7

Unlimited| 30.2 | 48.1 | 26.5 | 44.7
Combined 29.4 | 46.9 | 25.8 | 43.7 | 43.5

for lectmtg), 4 clusters (the default for confmtg, closefe tiverage number of meet-
ing participants, and optimized on old evaluation datayl an unlimited number of
clusters (constrained only by a minimum amount of data pestel). The results are
summarized in Table 8.

First, we can note that the (blind) choices made for eval0¥fratg and lectmtg
turned out to be optimal. The alternative clusterings tesuin minimal degradation
only. For coffee break recognition, we had made a poor cHdictusters) based on the
assumption that they would be more like conference meetagmgle cluster worked
best here, too. Most interestingly, the error patterns gsubion/insertion/deletion
rates) resulting from alternate clusterings were quitéedéht. This suggested com-
bining the different systems by merging the confusion nétsproduced in their final
stages. As shown in the last row of Table 8, this indeed yéetimsiderable reductions
in error over the single best system, of between 0.4% and al@86lute. (Of course,
this gain comes at the price of doubled run time.)

4 Overall Reaults

4.1 Conference Mesetings

Table 9(a) compares results on last year’s and this yeaalsi@tion sets for the confer-
ence room condition. For last year's test data we also irchedults from last year's
(RT-06) system, thereby allowing us to assess overall pgsgmade. Furthermore, we
list results with both the submitted RT-07 system and therawpments made post-
evaluation (the re-tuned priors for IHM recognition and thester combination for
MDM). On eval06, the progress on MDM data was about 11.4%ivel§14.0% post-
evaluation), and 8.8% on IHM data (15.8% post-evaluatidv®. also note that the
MDM word error rate on non-overlapped speech is within 8%l performance
on eval07, although this looks like an artifact of this pautar test set as (eval07 is
easier than eval06 on MDM, but harder for IHM recognition).

4.2 Lecturesand coffee breaks

Table 9(b) similarly summarizes all the results for the deetroom task, as well as
for the new coffee break genre. For eval06 lectures, MDM wenrdr was reduced
13.9% relative (15.5% post-evaluation), and IHM error ¥ .&lative (17.1% post-
evaluation). The ADM condition saw an even great improvenuér22.9% relative,
largely due to improved beamforming. Comparing acrossdets, we find that IHM



Table 9. Results on RT-06 and RT-07 test data summarized.

@ System MDM|SDM|IHM (b) System IHM|ADM|MM3A|SDM|IHM
eval06 confmtg eval06 lectmtg

RT-06 | 34.2|41.2(24.0 RT-06 |55.5/51.0| 56.5 |57.3|31.0

RT-07 | 30.3|40.6(21.9 RT-07 |47.8) 39.3 49.6(26.3

Post-eval 29.4 20.2 Post-eval46.9 25.7
eval07 confmtg eval07 lectmtg

RT-07 | 26.2|33.1{25.7 RT-07 |44.6| 42.1| 54.0 |50.6|30.5

Post-eval 25.8 24.0 Post-eval43.6 29.5
eval07 cbreak

RT-07 |44.7) 41.1| 51.0 |50.0|31.2

Post-eval43.5 30.6

Table 10. Results (error rates) on the speaker-attributed speetdxtdask, obtained by a com-

bination of the SRI-ICSI recognizer with the ICSI diarizatisystem. The error rates of the com-
ponent diarization and recognition systems are also gidatike elsewhere in this paper, the
scoring here was performed with up to three overlappinglsyeawith correspondingly higher

error rates.

Task eval07 confmtgevalQ7 lectmtg
MDM| SDM MDM
SASTT 40.3| 51.7 56.9
STT 37.4| 43.6 49.3
diarization 8.5 | 21.7 23.3

got harder this year, whereas MDM got easier, similar to whesaw with conference
data.

Finally, we observe that the RT-07 coffee break data shoms®across conditions
that are remarkably similar to the corresponding lectmsulits. This, together with
the earlier observations about speaker clustering andatttettian these results were
obtained with lecture-tuned language model, lead us toladedhat, for recognition
purposes, the coffee break data is presently not significdifterent from lecture data.

4.3 Speaker-attributed speech-to-text

This year NIST introduced a new “speaker-attributed spdedext” (SASTT) task,
combining diarization and speech recognition (speedetg-STT). Systems label each
recognized word with speaker tags, and the scoring progmamts a word as correct
only if both the spelling and the speaker label agree withréference (speaker la-
bels are treated as arbitrary and only significant to thenéxtat they indicate identity
or non-identity of speakers). The SASTT task is defined oalydistant-microphone
conditions.

We had not originally planned to develop a system for thik,that after the sub-
mission deadline we decided to generate SASTT output by plsimerging of our
speech recognition output with ICSI's diarization outgtiach recognized word was
labeled with the speaker label that overlapped the word thst.rifable 10 summarizes
the results, which turned out to be highly competitive evéhout having performed
any joint optimization on the diarization and STT systems.



5 Conclusionsand Future Work

We have made further progress in the recognition of conteremd lecture meetings,
with first results on “coffee break” data that are comparablthose on lectures. The
most significant contributions this year came from a continaof discriminative
techniques in acoustic modeling, including a new method?EWAP, that showed
the most substantial error reductions on the “hard” tasamety, distant microphone
recognition in general and lecture recognition in paracufdditional acoustic model-
ing gains came from adaptation to nonnative and non-Ameceylish telephone data.
Acoustic preprocessing was improved by using a new beanifigrimplementation
(for distant microphones) and re-tuning the speech/nawppriors (for close-talking
microphones). We found a simple way to improve distant nghome recognition in
combining multiple recognition systems differing only hretr speaker clustering con-
straints. Finally, we constructed a first, yet competitideSI T system by a straightfor-
ward merging of our STT system with ICSI’s diarization outpu
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